--- file_format: mystnb kernelspec: name: python --- # Cell Arrays Cell Arrays is a Python package that provides a TileDB-backed store for large collections of genomic experimental data, such as millions of cells across multiple single-cell experiment objects. # Install the package To get started, install the package from [PyPI](https://pypi.org/project/cellarr/) ```bash pip install cellarr ``` # Build the `CellArrDataset` The `CellArrDataset` method is designed to store single-cell RNA-seq datasets but can be generalized to store any 2-dimensional experimental data. This method creates four TileDB files in the directory specified by `output_path`: - `gene_annotation`: A TileDB file containing feature/gene annotations. - `sample_metadata`: A TileDB file containing sample metadata. - `cell_metadata`: A TileDB file containing cell metadata including mapping to the samples they are tagged with in ``sample_metadata``. - A matrix TileDB file named by the `layer_matrix_name` parameter. This allows the package to store multiple different matrices, e.g. normalized, scaled for the same cell, gene, sample metadata attributes. The TileDB matrix file is stored in a ``cell X gene`` orientation. This orientation is chosen because the fastest-changing dimension as new files are added to the collection is usually the cells rather than genes. Process: 1. **Scan the Collection**: Scan the entire collection of files to create a unique set of feature ids (e.g. gene symbols). Store this set as the `gene_annotation` TileDB file. 2. **Sample Metadata**: Store sample metadata in `sample_metadata` TileDB file. Each file is typically considered a sample, and an automatic mapping is created between files and samples. 3. **Store Cell Metadata**: Store cell metadata in the `cell_metadata` TileDB file. 4. **Remap and Orient Data**: For each dataset in the collection, remap and orient the feature dimension using the feature set from Step 1. This step ensures consistency in gene measurement and order, even if some genes are unmeasured or ordered differently in the original experiments. :::{note} Check out the [reference](https://biocpy.github.io/cellarr/api/cellarr#module-cellarr.build_cellarrdataset) documentation for modifying the parameters for any of these steps. ::: ![`CellArrDataset` structure](../assets/cellarr.png "CellArrDataset") First lets mock a few `AnnData` objects: ```{code-cell} import anndata import numpy as np import pandas as pd def generate_adata(n, d, k): np.random.seed(1) z = np.random.normal(loc=np.arange(k), scale=np.arange(k) * 2, size=(n, k)) w = np.random.normal(size=(d, k)) y = np.dot(z, w.T) gene_index = [f"gene_{i+1}" for i in range(d)] var_df = pd.DataFrame({"names": gene_index}, index=gene_index) obs_df = pd.DataFrame({"cells": [f"cell1_{j+1}" for j in range(n)]}) adata = anndata.AnnData(layers={"counts": y}, var=var_df, obs=obs_df) return adata adata1 = generate_adata(1000, 100, 10) adata2 = generate_adata(100, 1000, 100) print("datasets") print(adata1, adata2) ``` To build a `CellArrDataset` from a collection of `H5AD` or `AnnData` objects: ```{code-cell} import anndata import numpy as np import tempfile from cellarr import build_cellarrdataset, CellArrDataset, MatrixOptions # Create a temporary directory tempdir = tempfile.mkdtemp() # # Read AnnData objects # adata1 = anndata.read_h5ad("path/to/object1.h5ad", "r") # # or just provide the path # adata2 = "path/to/object2.h5ad" # Build CellArrDataset dataset = build_cellarrdataset( output_path=tempdir, files=[adata1, adata2], matrix_options=MatrixOptions(dtype=np.float32), ) print(dataset) ``` :::{important} All files are expected to be consistent and any modifications to make them consistent is outside the scope of this function and package. There's a few assumptions this process makes: - If object in ``files`` is an `AnnData` or H5AD object, these must contain an assay matrix in the layers slot of the object named as ``layer_matrix_name`` parameter. - Feature information must contain a column defined by the parameter ``feature_column`` in the `GeneAnnotationOptions.` that contains feature ids or gene symbols across all files. - If no ``cell_metadata`` is provided, we scan to count the number of cells and create a simple range index. - Each file is considered a sample and a mapping between cells and samples is automatically created. Hence the sample information provided must match the number of input files. ::: ## Optionally provide cell metadata columns If the cell metadata is inconsistent across datasets, you can provide a list of columns to standardize during extraction. Any missing columns will be filled with the default value `'NA'`, and their data type should be specified as `'ascii'` in `CellMetadataOptions`. For example, this build process will create a TileDB store for cell metadata containing the columns `'cellids'` and `'tissue'`. If any dataset lacks one of these columns, the missing values will be automatically filled with `'NA'`. ```python dataset = build_cellarrdataset( output_path=tempdir, files=[adata1, adata2], matrix_options=MatrixOptions(dtype=np.float32), cell_metadata_options=CellMetadataOptions( column_types={"cellids": "ascii", "tissue": "ascii"} ), ) print(dataset) ``` # Query a `CellArrDataset` Users have the option to reuse the `dataset` object retuned when building the dataset or by creating a `CellArrDataset` object by initializing it to the path where the files were created. ```{code-cell} # Create a CellArrDataset object from the existing dataset dataset = CellArrDataset(dataset_path=tempdir) # Query data from the dataset expression_data = dataset[10, ["gene_1", "gene_10", "gene_500"]] print("matrix slice:") print(expression_data.matrix) print("\n\n gene_annotation slice:") print(expression_data.gene_annotation) print("\n\n cell_metadata slice:") print(expression_data.cell_metadata) ``` This returns a `CellArrDatasetSlice` object that contains the matrix and metadata `DataFrame`'s along the cell and gene axes. Users can easily convert these to analysis-ready representations ```{code-cell} print("as anndata:") print(expression_data.to_anndata()) print("\n\n as summarizedexperiment:") print(expression_data.to_summarizedexperiment()) ``` # A single cell dataloader A basic single cell dataloader can be instantiated by using the `DataModule` class. ```python from cellarr.dataloader import DataModule datamodule = DataModule( dataset_path="/path/to/cellar/dir", cell_metadata_uri="cell_metadata", gene_annotation_uri="gene_annotation", matrix_uri="counts", label_column_name="label", study_column_name="study", batch_size=1000, lognorm=True, target_sum=1e4, ) ``` Users can optionally set a list of studies to be used as validation. If not provided, all studies are used for training. Additionally users may also provide the gene space to train their models. ```python val_studies = ["study1", "study100"] gene_list = [ "GPNMB", "TREM2", "LPL", "HLA-DQA1", "CD109", "IL6ST", "SDC2", "MSR1", "ALCAM", "SLC1A3", "CD9", "CD59", "MRC1", "SLC11A1", "CPM", "GPR183", "ITGAX", "HLA-DMB", "NRP2", "SV2C", "PTPRJ", "EMP1", "HLA-DQB1", "MERTK", "CD52", "CXCL16", "ABCA1", "HLA-DPB1", "OLR1", "CD83" ] datamodule = DataModule( dataset_path="/path/to/cellar/dir", cell_metadata_uri="cell_metadata", gene_annotation_uri="gene_annotation", matrix_uri="counts", val_studies=val_studies, label_column_name="label", study_column_name="study", gene_order=gene_list, batch_size=1000, lognorm=True, target_sum=1e4, ) ``` Users can access training cells by index. ```python datamodule.train_dataset[100] ``` Batches can be created and examined. ```python dataloader = datamodule.train_dataloader() batch = next(iter(dataloader)) expression, labels, studies = batch ``` The dataloader can then be used in training models. The package provides a simple autoencoder to serve as a template for the user's own models. ```python import pytorch_lightning as pl from cellarr.autoencoder import AutoEncoder autoencoder = AutoEncoder( n_genes=len(datamodule.gene_indices), latent_dim=128, hidden_dim=[1024, 1024, 1024], dropout=0.5, input_dropout=0.4, residual=False, ) model_path = "/path/to/model/mymodel/" params = { "max_epochs": 500, "logger": True, "log_every_n_steps": 1, "limit_train_batches": 100, # to specify number of batches per epoch } trainer = pl.Trainer(**params) trainer.fit(autoencoder, datamodule=datamodule) autoencoder.save_all(model_path=model_path) ``` --- Check out the [documentation](https://biocpy.github.io/cellarr/api/modules.html) for more details.